Management of Paediatric Spinal Injuries

Considerations, Differences/Similarities to the adult population

Spinal Interest Group Meeting 2018
Leah McLachlan
Orthotist
Royal Children’s Hospital
Melbourne
The Orthotic Management of Paediatric vs Adult Spinal Injuries
What stays the same?

• The Fundamentals
 • Prescription Principles
 • Level and Severity of injury
 • Individual patient factors
What stays the same?

- Effectiveness of Orthotic Mx:
 - Rigidity and design of orthosis
 - How well it is fitted
 - Pt’s attempts to move against orthosis
 - Appropriate education and follow up

(Johnson et al;2018)
What makes paediatric Mx different?

- Anatomical differences:
 - Size
 - Proportions
 - Biomechanics of bone and joint

- Impacts on type and location of injury

Fig. 2 Increase in total stature at various ages as compared to the adult. (Modified from Chenoweth and Selrick, “School Health Problems.”)
What makes paediatric Mx different?

- External factors
 - Behaviour
 - Activity level
 - Comprehension
 - Compliance
 - Parents....
Anatomical Differences

• Fulcrum of Motion
Anatomical Differences

- The Paediatric cervical spine also has:
 - Greater mobility
 - Laxity of ligaments
 - Shallow and angled facet joints
 - Underdeveloped spinous processes
Change in Relative Body Proportions from Fetus to Adulthood

(from Robbins et al: Growth, Yale University Press, New Haven, 1928)
Occipital Offset and Neck Angle

A: Occipital Offset with respect posterior aspect of the trunk
B: Occipital angle
C: The chin offset with respect the sternum

(Johnson et al, 2018)
Occipital Offset

- Often forgotten in the acute setting but extremely important
- Crucial to achieving neutral position
- Ensures appropriate shape for airway
- Without offset it produces:
 - Kyphosis of Cx Spine
 - Obstruction of airway
Mechanism of Injury – Trauma

• MVA: 48-61%
 • Passenger: 31-42%
 • Pedestrian: 11-16%
 • Bike rider: 5-6%

• Falls:
 • 18-30% in children <8yo
 • 11% in children >8yo

• Sports Injuries
 • 3% in children < 8yo
 • 20-38% in children >8yo

(Gore et al, 2009)
Mechanism of Injury - Trauma

- **Under 8yo**
 - 72% of spinal injuries are cervical
 - Less likely to sustain a fracture
 - Higher risk of SCI
 - 87-100% at C3 or higher

- **Over 8yo**
 - 80% fracture is primary injury

- **Over 12yo**
 - Similar injury pattern to adults

(Easter et al; 2011)
Non-Trauma related Cx Spine instabilities
Atlanto-axial rotary subluxation

- Rotational subluxation or dislocation C1 on C2
- Causes:
 - Osseous or ligamentous abnormalities
 - Minor Trauma
 - Post Op: tonsillectomy, pharyngectomy
- Presents as torticollis
 - (cock-robin position)

Fielding and Hawkins Classification (Fielding, 1977)
Skeletal Dysplasias

- Achondroplasia
- Mucopolysaccharidoses
- Larsen’s
- Altered cartilage and bone development
- Risk of quadriplegia or sudden death
Other diagnoses

- Downs Syndrome
- Klippel Feil Syndrome
- S.W.A.N.
Other diagnoses

• Downs Syndrome
• Klippel Feil Syndrome
• S.W.A.N.
 • Syndromes Without A Name..!
Chiari Malformation

- Portion of the cerebellar tonsils come down through the foramen magnum at the base of the skull
Syringomyelia (Syrinx)

NORMAL

SYRINX
Post Surgical Stabilization

- Use of orthoses in paeds more prevalent
- Unpredictable behaviours
- May mobilize far too early against instruction
- Excessive loads placed on fixation
Prefab Spinal Orthoses in Paeds

• Papoose
 • Age Range: 0-3 months

• All other CTOs
 • Age Range: Generally 2+

• Age range as a guide only – huge variations in childhood size
whether young footballers should be separated in weight divisions instead of age.

FOOTY'S GENTLE GIANT
The seven-year-old player as big as kids twice his age
What about the 3 month to 2 year olds???

- Commonly have high cervical injuries that require external fixation to skull and thorax
RCH Infant Spinal Immobilizer

- In-house sizes from premature up to approx 4yo
- Allows immediate fitting in acute setting
- Suitable for non-ambulant pts
Halo Management at RCH

• Fit between 5-10 Halos per year
• Age range: 2-18yo
• Estimate
 • 60:40 Trauma vs Planned Surgical fixation
• Referring team
 • Majority referred from Orthopaedics
 • Occasionally by Neurosurgery – joint consults with ortho if structural instabilities
Halo Management at RCH

- Majority applied in theatre
- Referring team responsible for ring and pin selection, placement, number of pins and torque
 - Orthotics assist in ring size selection and pin placement where required
- Orthotics measure and fit jacket and suprastructure
Skull thickness in millimeters as measured from CT scans, stratified by age, gender, and location (A: left posterior, B: right posterior, C left frontal, and D right frontal) (Letts et al)
Halo Management at RCH

- Halos are reviewed 1/7 post fitting
 - Orthotist checks jacket and suprastructure
 - Ortho medical staff retention pins 24/24 post application
- Reviewed weekly while an IP
- Reviewed 3/52 as OP
- Liner changes if required but not standard
 - Case dependent: pts can find process quite traumatic
Considerations of Halo fitting in a child

- Ensuring shell lengths don’t extend past costal margins is crucial to a good fit
- Children spend more time:
 - Floor playing
 - Sitting
 - Running around
 - Being unaware of the gravity of the situation
P2 – P3 Vest Comparison

Anterior

Posterior

P3 – Adult Short Comparison

Anterior

Posterior
Sitting and standing height birth to adulthood

Changes in sitting height from birth to adulthood

(Canavese et al; 2013)

(Huelke; 1998)
Case Study: 3yo Trisomy 21 with C1-C2 Instability

- 3/12 history of decline in motor function
- MRI showed C1-C2 instability with cord signal change
- Pt placed in aspen pre surgery
- Pt booked for C1-C2 fusion surgery
 - CTO to be fitted post surgery in theatre
- 3D imaging to fabricate a custom CTO
Pt is wiggly and non compliant+++!
Case Study: 3yo Trisomy 21 with C1-C2 Instability

• Fitted with CTO post surgery
• RCH Infant Spinal Immobiliser posterior shell
• Anterior section combination:
 • Modified anterior Paediatric Minerva section
 • attached to a Miami J PD 2 collar
• Rotational control improved with Miami J due to more contoured chin section
Case Study:
3yo Trisomy 21 with C1-C2 Instability

• C1-C2 fusion with wires failed
• Required revision fusion and application of Halo post surgery to maintain fixation
• Prior to surgery significant modifications were required to Bremer Toddler Halo vest to achieve satisfactory fit
Case Study:
3yo Trisomy 21 with C1-C2 Instability

• Problem: How to transport pt in 5 point harness car seat?
• RCH had not recently fitted a Halo to a pt this young that required a car seat with a 5 point harness system
Case Study: Cervical Kyphosis 2nd to Larsen’s Syndrome

• Referral for ‘Brace for Cervical Kyphosis’

112 degree Kyphosis
Case Study: Cervical Kyphosis 2nd to Larsen’s Syndrome

- As well as Cervical Kyphosis:
 - Congenital bilateral knee dislocations
 - Valgus deformity and instability of knees
 - Severe hip dysplasia
 - Rigid CTEV
 - Growth disturbances in proximal tibias
- Just beginning to pull to stand from floor
Case Study: Cervical Kyphosis 2nd to Larsen’s Syndrome

- Treatment of Cervical Kyphosis in Larsen’s
 - Differing opinions
 - Surgical and orthotic interventions can be successful or catastrophic
 - Surgery not always feasible due to anaesthetic risk and pseudoarthrosis post surgery
 - Orthotic intervention requires close observation
Case Study: Cervical Kyphosis 2nd to Larsen’s Syndrome

• Treatment of Cervical Kyphosis in Larsen’s
 • Differing opinions
 • Surgical and orthotic interventions can be successful or catastrophic
 • Surgery not always feasible due to anaesthetic risk and pseudoarthrosis post surgery
 • Orthotic intervention requires close observation

• “Cervical Kyphosis in Larsen’s can cause Spontaneous Death...”
Case Study: Cervical Kyphosis 2nd to Larsen’s Syndrome

3/12 post fitting: 62 degrees
6/12 post fitting: 46 degrees
18/12 post fitting: Plateaued at 39 degrees
Case Study: Cervical Kyphosis 2nd to Larsen’s Syndrome

Pre Orthotic Intervention

1 year post removal of orthosis
Case Study: 17yo with Severe Cervico-Thoracic Kyphoscoliosis

- Referral for Halo fixation post cervical spine fusion
- Fragile X Syndrome
 - Intellectual Disability
 - ADHD and Autism
 - High Anxiety
- Aggressive – Hits out and swears almost as much as me!
Case Study: 17yo with Severe Cervico-Thoracic Kyphoscoliosis
Case Study:
17yo with Severe Cervico-Thoracic Kyphoscoliosis
Case Study:
SCI in a child with Achondroplasia

- Hyperflexion/extension injury after sliding down a playground slide at age 18/12
- Immediate deterioration of use of limbs
- MRI post injury
 - Pre-existing severe upper cervical canal stenosis
 - Signal changes at C1-C2
- Pt ICU – medically unstable
Case Study: SCI in a child with Achondroplasia

• Referral to Orthotics for Spinal Orthosis
 • No pre-fab options available in general for this age range
 • Head : Torso ratio significantly larger
 • Unable to take custom mould
 • Measurements + Aluminium strip + creative artwork = custom RCH Infant Spinal Immobiliser!
Case Study:
SCI in a child with Achondroplasia
Case Study: SCI in a child with Achondroplasia

• Pt remained in RCH Infant Spinal Immobiliser with anterior Aspen collar for 6/12
• Regained almost complete function and began walking again
• Required change in Orthotic Prescription to provide flexion and rotational control
Case Study:
SCI in a child with Achondroplasia

• Pt remained in a custom CTO for 2.5 yrs
 • Last 12/12 was able to use an aspen for short periods to increase neck muscle strength
• September 2017
 • Posterior Fossa Decompression
 • Fitted with and currently wearing a Miami J P2
• Has MRI booked this month
• All going well will be brace free for the first time in 3.5 years
1st Li’l Angel Halo fitted at RCH

• 9yo female
• MVA: Head-on collision 100km/h
• Multi-system trauma
 • Cranio-Cervical dislocation
 • Diffuse axonal brain injury
 • Subdural haemotoma
 • Pulmonary contusion
 • Splenic laceration
 • Pancreas contusion
 • Liver Laceraction
 • Haemoperitoneum
 • Open pelvic fracture
 • Sacral Fracture
1st Li’l Angel Halo fitted at RCH

- Ex Fix applied for temporary stabilization of pelvic fractures
- Halo fitting delayed due to extent of internal injuries requiring surgery
1st Li’l Angel Halo fitted at RCH

• Fitted with Aspen collar with full spinal precautions until Halo able to be applied
• Pt in ICU: Multiple surgeries to stabilize internal injuries
• 4 days post admission internal injuries stable enough to allow halo vest fitting
1st Li’l Angel Halo fitted at RCH

- Halo fitted in theatre with Ortho, Neuro and Gen Surg present
1st Li’l Angel Halo fitted at RCH

- No pressure allowed over abdominal area
 - Suture line extending from Xyphoid process – abdomen
- P3 6-12yo vest too long – vest below costal margin
- Pt fitted with a P2 2-6yo vest – abdomen clear of any pressure
- Open back halo ring applied
1st Li’l Angel Halo fitted at RCH

- Things to Watch
 - Height of Distraction assembly sits quite low – obscured view of cranio-cervical junction on xray. Required adjustment
 - New final checklist procedure – making sure no screws are missed!
 - Re-Education of ward staff on CPR procedure
References

References

